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Abstract. We have studied rooted spiral trees in dimensions 2 , 3  and 4 by exact enumeration 
and by Monte Carlo methods. Numerical estimates of critical exponents thus obtained 
support the hypothesis that a dimensional reduction by four occurs in this problem. A 
possible mechanism of the origin of this dimensional reduction is proposed. 

Lattice animals have been much studied in literature as lattice models of branched 
polymers in dilute solution, and they also describe the statistics of large percolation 
clusters below percolation threshold (Lubensky and Isaacson 1979, Stauffer 1979, 
1981). For a directed variant of the lattice animal problem, some interesting results 
have been obtained in the last few years (Dhar 1986 and references therein). In 
particular, it was found that the directed animal problem shows a dimensional reduction 
by 1, while the original (undirected) animal problem shows a dimensional reduction 
by 2 (Parisi and Sourlas 1981, Stanley et a1 1982, Cardy 1982, Family 1982). Recently, 
a different variant of this problem, incorporating a spiral constraint, has been proposed 
(Li and Zhou 1985, Bose and Ray 1987). Li and Zhou (1985) estimated the exponents 
for spiral bond trees in two dimensions using exact enumeration of all trees having at 
most 14 bonds, and showed that the exponents are quite different from the case with 
no spiral constraint. 

In this letter, we describe the results of an exact enumeration and Monte Carlo 
study of the site version of this problem in dimensions 2, 3 and 4. For the two- 
dimensional case, we have determined the exact number of spiral trees and their 
moments of inertia for all trees having up to 22 sites on the square lattice. In addition, 
the number of trees was determined for three more sizes, up to 25 sites. These data 
were supplemented by a Monte Carlo study of spiral trees having up to 50 sites. In 
three and four dimensions, we generated all spiral trees having up to 12 and 9 sites 
respectively. Monte Carlo studies for these dimensions have not yet been performed. 
From the estimated critical exponents in these cases, we find numerical evidence for 
dimensional reduction by four in this problem. A possible mechanism to explain this 
dimensional reduction is proposed. 

On any lattice, a set of sites mutually connected by nearest-neighbour bonds is 
called a tree if it contains no loops. If one of the sites is specified as the root, it is 
called a rooted tree. A rooted tree is said to have the spiral property if, for all sites 
belonging to the tree, the projection of the path connecting to the root onto a specified 
plane (say the xy plane) contains no left turns. Figure 1 shows a spiral tree on the 
square lattice. 
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Figure 1. A rooted spiral tree on the square lattice. 
The root is denoted by a cross. 

U 
Figure 2. An example of a three-bond spiral tree that 
is not a four-site spiral tree. The root is denoted by 
a cross. 

Other definitions of the spiral constraint are possible. In dimensions higher than 
2, one may insist that the projections of the connecting paths onto more than one 
specified planes be spiralling. These additional constraints are interesting theoretically, 
as they presumably lead to dimensional reduction by more than four, but we shall not 
study these here. 

It is useful to distinguish our definition from two other definitions that have been 
used in literature. Bose et a1 (1987) have studied unrooted spiral trees, where the root 
is not specified, and two trees differing only in the choice of root are not counted as 
distinct. The number of unrooted distinct spiral trees of a particular size is thus 
somewhat less than the rooted trees, though they are expected to be in the same 
universality class. Li and Zhou (1985) studied rooted bond spiral trees. These also 
contain configurations, such as are shown in figure 2, which are not allowed in the 
site version studied here. 

Let A, be the number of distinct rooted spiral site trees. The average values of the 
(xx) and ( z z )  components of the moment of inertia tensor over all trees of size n will 
be denoted by Z,,pi and Z,,,, (here z is any one of the directions perpendicular to the 
xy plane). These measure the average extension of the n-site spiral tree in the spiral 
plane directions and perpendicular to the spiral plane respectively. For large n, A,  is 
expected to vary as A “n-’,  where A is a constant and 8 is a critical exponent. and 
In,zz are expected to vary as powers of n :  Z,,,, - n 2 ” p 1 + ‘  and - n * ” ~ + ‘  . These define 
the exponents vpr and Y,. If d = 2, vI is not defined. 

For the exact enumeration of spiral trees, we used the well known Martin algorithm 
(Martin 1974). The results for tree numbers and their average moments of inertia are 
shown in tables 1-3. 

For analysing the exact data on square lattice tree numbers, we tried a sequential 
fit of the data to the form 

for three successive values of n, keeping 6 fixed (but adjustable). For 6 lying between 
1.41 and 1.43, we found a satisfactory convergence of the successive estimates of A 
and 8 to the values 

log A,, = TI log A + B - 8 log(n + 6 )  

A =2.1166*0.0010 
(square). e i= - 1.307 * 0.006 
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Table 1. Exact data on square lattice spiral trees. 

n A" 2U",P/) n An 2( I " , d  

1 1 0.000000 14 286 376 154.926 432 
2 4 1.000000 15 658 100 182.624835 
3 14 3.142857 16 1 504900 212.938 547 
4 40 6.800000 17 3 426464 245.919 131 
5 105 12.266667 18 7 771 444 281.619 675 
6 268 19.656716 19 17 565 064 320.089 299 
7 674 28.919881 20 39 576 360 361.374 917 
8 1 660 40.159036 21 88 916 877 405.522 760 
9 4 021 53.513056 22 199 252 252 

10 9 612 69.074906 23 445 438 310 
11 22 734 86.926014 24 993 616 344 
12 53 276 107.140851 25 2211923712 
13 I23 916 129.787 372 

Table 2. Exact data on spiral trees on a simple cubic lattice. 

n A,, A n ( L p J  A"U",A 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

1 
6 

41 
260 

1568 
9 190 

53 090 
303 900 

1 727 691 
9 767 426 

54 966 550 
308 138 528 

0 
2 

38 
472 

4 722 
41 652 

338 702 
2 597 720 

19 056 884 
134 997 622 
929 820 026 

6258509116 

0 
2 

44 
592 

6 244 
56 970 

473 556 
3 689 496 

27 402 196 
196 150454 

1363 561 612 
9 255 729 344 

Table 3. Exact data on d = 4 hypercubic lattice spiral trees 

n A" A"(L,p/) Anun,zz)  

1 1 0 0 
2 8 2 2 
3 80 54 60 
4 801 1022 1212 
5 7 946 16 319 20 202 
6 78 394 236 110 300 648 
7 772 059 3 205 560 4 157 398 
8 7 601 233 41 618 157 54 621 874 
9 74 866 351 522 730 488 691 254410 
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For the radius of gyration data, we used a sequential fit to the form 

log( I,) = (2 Vpl + 1)  log( n + 6) + B + c/ ( n + s ) 2 .  

For S lying between -0.50 and -0.56, we found that the sequential fit values of vpr 
are clustered around 

2vPl = 1.306 rt 0.010 (square). 

It may be noted that these values differ significantly from the values deduced by Li 
and Zhou (1985) ( A  =2.662*0.006, e = -1 .19~0.03 ,  v=0.577*0.01) for spiral bond 
trees from the analysis of a shorter series. We have added three more terms to their 
series and reanalysed the data. The bond-tree numbers for n = 13-17 on the square 
lattice are 3257 168, 9392 774, 26 946 680, 76 949 416, 218 826 412. This corrects the 
last two entries of Li and Zhou. Using the same fitting form as in the case of site trees, 
we obtain A =2.646*0.002, 8 = -1.33rt0.02 for S near 1.9. Similar analysis for vPr 
gives a value 0.665 rt 0.015. These values are in fair agreement with the corresponding 
values for site trees suggesting that these two are in the same universality class. 

For the three-dimensional problem, similar sequential fits give 

A = 5.368 * 0.003 

e = -0.53 rt0.01 
(simple cubic). 

vP/ = 0.44 f 0.01 

vL = 0.52 f 0.01 

For the four-dimensional case, our series is too short for a sophisticated analysis, 
but the data are quite consistent with 

A = 9.85 f 0.03 e = o  ( d  = 4 hypercubic) 

vP1 VI = 0.50 rt 0.05. 

For the square lattice case, even though the series we generated is fairly long, the 
subjective error estimates given are quite large because of poor convergence of the 
estimates in the three to four similar extrapolation forms we tried. We have extended 
the numerical data for large n ( n  S 50) by using the Monte Carlo incomplete enumer- 
ation methods (Dhar and Lam 1986). We determined the exact number of descendents 
of each tree generated, and also the radius of gyration. The average over the sample 
generated of the mean number of descendents and the average moment of inertia of 
a tree of n sites gives us a direct estimate of A,+,/A, and 

A significant reduction in the variance of the Monte Carlo data is achieved if, 
instead of choosing survival probabilities in each generation so that the mean number 
of trees of n sites generated in one run is approximately one and making many runs 
(Dhar and Lam 1986), we do an exact enumeration up to size nexact < N and incomplete 
enumeration for larger n so that each surviving tree with na nexacr gives rise to 
approximately one surviving direct descendent on average (stratified sampling without 
replacement). 

The standard error of the estimate is calculated from the spread in observed averages 
in different runs. In our Monte Carlo data, we made six different runs each for nexact = 15 
and 16. This corresponds to a sample size of approximately 2.5 x lo7 trees for all n 
lying between 16 and 50. The data are summarised in table 4. The average number 
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Table 4. Monte Carlo data for spiral trees on the square lattice. 

n Mean moment of inertia Mean number of descendents 

22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 

452.74 f 0.46 
502.83 f0.47 
555.83 f 0.63 
611.94*0.84 
671.2f 1.2 
733.5 f 1.3 
798.9 * 1.7 
867.2 * 2.3 
938.8 f 2.8 

1013.6h3.7 
1092.0f4.8 
1173.4f 5.9 
1258.3 *7.0 
1346.7 f 7.9 
1438.3 f 9.4 
1533.4* 10.3 
1632i  12 
1734f 13 
1840*15 
1949f 16 
2062f 18 
2178f20 
2299 f 23 
2422 f 26 
2549 f 28 
2694f31 
2814 f 34 
2952 f 36 
3092 f 38 

2.2404f0.0016 
2.2350f0.0021 
2.2299 f 0.0019 
2.2254*0.0019 
2.22 17 f 0.001 8 
2.2179 f 0.001 7 
2.2141 f0.0017 
2.2109 f 0.0013 
2.2077 fO.0018 
2.2048 f 0.0022 
2.2020f0.0028 
2.2995 f 0.0026 
2.1969f0.0030 
2.1950f 0.0032 
2.1930*0.0040 
2.1905 f0.0037 
2.1884 f 0.0035 
2.1865 f0.0037 
2.1846 *0.0035 
2.1830f 0.0032 
2. I814 f 0.0034 
2.1801 f0.0034 
2.1786f 0.0034 
2.1773 f 0.0035 
2.1761 f0.0035 
2.1753 f 0.0039 
2.1737 f0.0042 
2.1726*0.0045 

of descendents of a tree of size n is a direct estimate of (A,+,/A,). A least-square fit 
of the form 

log( Zn,p,) = (2 up, + 1) log n + A 

for n lying between n = 25 and 50 gives the estimates 

A = 2.1 17 * 0.002 

e =  -i.28*0.02 

2vP,= 1.34~t0.03. 

These estimates are in fair agreement with the exact series estimates given earlier. 
We note that the exponents for the square lattice spiral trees are quite different 

from those of spiral animals (loops allowed). For the latter problem, Bose and Ray 
(1987) have found that 8=0, U=+. In contrast, in both the ordinary and directed 
variants, animals with or without loops are expected to be in the same universality 
class and have the same exponents (Gaunt et a1 1982, Duarte 1985). 
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A scrutiny of the numerical data leads us to the following conjecture for the rooted 
spiral trees in dimensions d > 2: 

e = ( d  - 4 ) ~ ~  for d > 2. (A) 

If we use the classical values of 8 and v, equal to the Cayley tree values e = i, v, = t ,  
this equation implies that the upper critical dimension for the spiral trees problem is 10. 

The case of d = 2 is somewhat special. In this case Y, is not defined, and the only 
length scale in the problem is the in-plane extent of the spiral trees. It seems plausible 
to conjecture that, in this case, the above relation is modified to 

e = ( d  - 4 ) ~ , ,  for d = 2. 

These relations (A) and (B) were suggested by the existence of similar relations for 
the undirected and directed animals: 

e = ( d  - 2 ) ~  

e = ( d  - i )v ,  

for undirected rooted trees 

for directed rooted trees. 

These relations are the analogues of the conventional hyperscaling relations. For 
directed trees (as for directed animals) the factor ( d  - 1) is understood as being due 
to the dimensional reduction by one occurring when the disorder or cellular automaton 
condition is satisfied (see Rujan (1987) for a discussion and earlier references). For 
the undirected animals, the dimensional reduction by two is understood as being due 
to a hidden supersymmetry of the problem (Parisi and Sourlas 1981). For our problem, 
a similar explanation is not yet available. However, we suggest the following heuristic 
argument for the dimensional reduction by four. 

A simple example where spiral motion leads to a dimensional reduction by two is 
the quantum mechanical motion of a charged particle in a uniform magnetic field. 
The degrees of freedom perpendicular to the field get quantised, and the resulting 
discrete spectrum does not contribute to the density of states of low-energy excitations. 
This leads to a reduction in the effective dimensionality of the system by two. In a 
field theoretic action for spiral animals, in addition to terms corresponding to indepen- 
dent charged-particle motion in an external magnetic field, there are terms correspond- 
ing to one particle giving rise to two particles (branching) and particle annihilation 
(branch ends). However, if these terms are treated as perturbations, the bare propa- 
gators appearing in the perturbation theory still show dimensional reduction by two. 
Thus this mechanism of dimensional reduction works term by term in a perturbation 
theory. The effective dimensionality is further decreased by two by the conventional 
Parisi-Sourlas (1981) mechanism. 

Further studies of this problem are needed to elucidate fully the dimensional 
reduction in this problem and to understand its relationship with the conventional 
animal problem. 
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